MODEL EXAM QUESTIONS FOR PRACTISING (TOX-20303)

1. Introduction: History and Scope of Toxicology

1) What is toxicology? (Indicate the one best answer).
O The field that studies the adverse effects on humans and animals.
O The field that studies the adverse effects of chemicals on living organisms.
O The field that studies the adverse effects of chemicals and micro organisms.
O The field that studies the risk-benefit balance of chemicals for living organisms.
6 · 6 · · · · · · · · · · · · · · · · ·
2) Indicate which persons played an important role in the history of toxicology. (Indicate all
that apply).
☐ Atropa belladona
□ Paracelsus
□ Van 't Hoff
□ St Anthony
□ Orfila
- Onna
3) Indicate which chemicals played an important role in the history of modern toxicology.
(Indicate all that apply).
☐ Mercury
□ Dioxins
□ Alcohol
□ Softenon
□ Softenon
4) Fill in the blanks. (Write your answer on the dots).
a) The concept of dose in toxicology was introduced in by
b) The target organ concept was introduced in toxicology by
c) The affair with introduced emphasis on teratology and
reproduction toxicology in safety testing of drugs and chemicals.
d) Modern toxicology especially developed because of the many new drugs,
pesticides, munitions and industrial chemicals developed during the periods of the
and

2. Principles of Toxicology

5) Give the right sequential order of the following steps. (Number the steps from 1 to 4 on the dots).

Risk assessment	
Hazard identification	
Risk management	
Hazard characterisation	

6) Indicate what is true about the process of risk evaluation as defined by the FAO and WHO. (Indicate **all** that apply).

Risk assessment consists of risk characterisation, exposure assessment, risk
management and risk communication.
Risk assessment integrates hazard characterisation and exposure assessment.
Risk management is part of risk assessment.
Exposure assessment follows hazard characterization.
Risk management follows risk assessment.

7) Match each description with its corresponding term. The terms may be used only once.

Description	Number of
	Term
A. Integrating hazard characteristics with exposure data.	
B. The probability that an adverse effect will occur.	
C. Integrating risk assessment with social, economic and	
political aspects.	
D. The molecular structure affected by a toxic agent.	
E. A potential danger of a compound or a process.	

Term
1. risk assessment
2. hazard
3. receptor
4. risk
5. risk management

- 8) What is true about the process of risk assessment? (Indicate the **one** best answer).
 - O Acute exposure and chronic exposure to a chemical result in effects on the same target organ.
 - O DNA can be a toxicological receptor.
 - O A dose response curve is important to establish the LD50 which is an important parameter in modern toxicological risk assessment.
 - O The LD50 is a constant parameter reflecting the acute toxicity of a chemical for different species.

3. Mechanisms of Toxicity

9) Match each type of chemical with its corresponding term describing a mechanism of toxicity. The terms may be used more than once or not at all. Term

1. electron abstraction

		11 CICCION WESTINGING	
Type of chemical	Number of	2. hydrogen abstraction	
	Term	3. covalent binding	
A. Compound causing lipid peroxidation.		4. agonist action	
B. Electrophile causing a DNA mutation.		5. modulating action	
C. Compound causing methemoglobinemia.			
D. Compound inhibiting acetylcholinesterase.			
E. Compound binding and activating an			
acetylcholine receptor in the			
same way as done by acetylcholine.			
 Fe in hemoglobin from Fe²⁺ to Fe³⁺. ☐ Reactive oxygen species (ROS) damage only unsaturated membrane lipids. ☐ Sarin and soman act by binding to the acetylcholine receptor. ☐ An antagonist does not require structural similarity to the natural ligand to block the receptor. ☐ Inhibition of oxygen binding to hemoglobin by CO is an example of non covalent binding causing toxicity. 11) Which are chemicals acting by non-covalent interactions? (Indicate the one best answer). 			
 O Sarin, soman, and acetylcholine agonists. O Benzo(a)pyrene and other genotoxic agents mod O Tetrodotoxin, saxitoxin and curare. O Nitrate, reactive oxygen species and carbon mon 	ifying DNA.	the one best answer).	
12) What is true about reactive oxygen species (ROS) ☐ In the Haber-Weiss reaction superoxide anions hydroxyl radicals.	and hydrogen pe		

☐ Reactive oxygen species are toxic because they are able to cause hydrogen abstraction. ☐ Reactive oxygen species are toxic because they cause non-covalent interactions with

☐ Reactive oxygen species cause formation of covalent DNA adducts.

☐ Reactive oxygen species are toxic because they cause methemoglobinemia.

neurotransmitter receptor proteins.

4. Absorption, Distribution and Excretion of Toxicants

 13) What is true for ADME characteristics? O ADME characteristics describe all what body. O ADME characteristics describe the tox O ADME characteristics determine the b O ADME characteristics describe how a of action. 	ticodynamic phase.	ound when it has entered the mpound upon oral intake.	
 14) Fill in the blanks. (Write your answer on the dots). a) The process in which compounds pass cell membranes against a concentration gradient is called			
		Term	
Description	Number of Term	1. facilitated diffusion	
A. Process requiring energy		2. toxicokinetics	
B. ADME characteristics		3. first pass effect	
C. Transport by a carrier not using ATP		4. toxicodynamics	
D. Process preventing systemic effects		5. active transport	
E. Reaction with the toxicological receptor			
16) What is true about absorption of toxicant by the lungs? (Indicate all that apply). ☐ The mucociliary escalator plays a role. ☐ The first pass effect plays a role. ☐ Particle water solubility plays a role. ☐ Ionization plays an important role. ☐ Diffusion through cell membranes is rate limiting.			

5. Biotransformation of Xenobiotics

☐ Pha☐ Pha☐ Pha☐ Pha☐ Hyo	s true about the biotransformation of xenobiotics? (Indicate all that apply). see I modification can follow phase II conjugation. see I modification makes a compound water soluble. see I modification results in bioactivation of a xenobiotic. drophilic metabolites do not require phase I or phase II metabolism to be excreted in arine. ransformation can be part of the mechanism of toxicity of a chemical.
	rpe of biotransformation reactions can play a role in the mammalian metabolism of dicate the one best answer).
NH ₂	aniline
O Epoxi O Glutat	etylation, hydroxylation, glucuronidation. dation, methylation, sulfation. hione conjugation, reduction, N-hydroxylation. eduction, glycine conjugation, aromatic ring opening.
O N-Acc O Hydro O Methy	rpe of biotransformation reactions are phase I reactions? (Indicate the one best answer etylation, glucuronidation, epoxidation. explation, sulfation, glutathione conjugation. evaluation, N-oxidation, nitroreduction. eatom dealkylation, epoxidation, hydroxylation.
a) 7	he blanks. (Write your answer on the dots). The process in which compounds are modified into metabolites that are more toxic than the parent compound is called
	The most important enzymes for phase II metabolism of xenobiotics with hydroxyl groups are and
1	The mechanism for phase I hydroxylation of aliphatics by P450 proceeding by H-radical abstraction followed by OH-radical coupling to the aliphatic radical is called the mechanism.

6. Toxicokinetics

 21) What is true about toxicokinetics? (Indicate all that apply). ☐ Toxicokinetics describes dose-response curves. ☐ Toxicokinetics describes plasma concentrations as a function of time. ☐ Toxicokinetics describes models for bioavailability. ☐ Toxicokinetics is part of the toxicodynamic phase. ☐ Toxicokinetics includes PBK modelling.
22) What are advantages of PBK modelling over classical toxicokinetic modelling? (Indicate
all that apply).
□ PBK models can predict the concentration of a chemical in all relevant organs.
☐ PBK models can calculate the apparent volume of distribution.
☐ PBK models can be used to predict interspecies differences.
☐ PBK models can be used to predict chronic toxicity.
☐ PBK models can be used to model plasma levels.
I Bit models can be used to model plasma levels.

23) Match each description with its corresponding term. The terms may be used only once.

Description	Number
-	of Term
A. Kinetic model in which plasma levels and	
tissue levels of a chemical are modelled to be	
similar.	
B. Kinetic model in which all relevant tissues are	
described as separate compartments.	
C. Kinetic model in which the amount of	
compound eliminated is constant over time.	
D. Kinetic model in which the rate of elimination	
of a compound is proportional to the amount of	
the compound in the body.	
E. The amount of drug in the body divided by	
the plasma drug concentration.	

Term
1. PBK model
2. one compartment model
3. 0-order kinetics
4. apparent volume of distribution
5. 1 st order kinetics

- 24) What parameters are used as input in PBK models? (Indicate the **one** best answer).
 - O Apparent volume of distribution, plasma concentrations, dose administered.
 - O Plasma concentrations, urinary levels, metabolite levels.
 - O Blood flow rates, tissue volumes, kinetic parameters for biotransformation.
 - O Tissue concentrations, species dependent parameters, first order elimination constants.

7.	Genetic	Toxico]	logy
	Other	I UAICU	UEY

25) What is true about mutagenesis? (Indicate all that apply).	
	Mutagenesis consistently predicts carcinogenesis.
	Mutagenesis includes initiation, promotion and progression.
	Mutagenesis occurs more often in germ cells than in somatic cells.
	Mutagenesis can result from oxidative stress.
	Mutagenesis is a reversible process.

26) Match each description with its corresponding term. The terms may be used only once.

Description	Number
	of Term
A. Enzymatic un-do of damage.	
B. Removal of damaged base followed by DNA	
polymerase and DNA ligase activity.	
C. Incorporation of random nucleotides to fill up a lesion.	
D. Repair of action of DNA polymerase III resulting in 1	
wrong base pair incorporated per 10 ⁸ bases synthesized.	

Term
1. mismatch repair
2. error prone repair
3. excision repair
4. reversal of damage

27) What are chromosome aberrations, i.e. changes at the individual chromosome level?
(Indicate all that apply).
☐ Aneuploidy
☐ Frameshift mutations
☐ Basepair substitutions
☐ Translocations
☐ Sister chromatid exchanges
28) What is true about gene mutations? (Indicate the one best answer).
O Genetic abnormalities resulting from mutations can be placed in two categories:
frameshift mutations and chromosome aberrations.
O Changes in the number of chromosomes, aneuploidy or polyploidy are not considered
genetic abnormalities resulting from mutations.
O Transitions and transversions are frameshift mutations.
O Most chemical carcinogens with cancer initiating activity are also mutagenic.

8. Chemical Carcinogenesis

29) W	That are important cancer inducing factors? (Indicate all that apply).
	RNA viruses
	Ionizing radiation
	Pesticides
	Food colours
	Genetic factors
30) W	hat is true about induction of cancer by asbestos? (Indicate the one best answer).
O I	t requires metabolic biotransformation (bioactivation) by macrophages.
O I	t occurs in lungs and liver and results in mesothelioma's.
	t is initiated by the fact that asbestos fibres become surrounded by glycoprotein and annot be adequately removed by macrophages.
0	It only occurs in combination with heavy smoking.
31) W	That are important classes of cancer inducing chemicals? (Indicate all that apply).
	Nitrosamines
	Films and fibres
	Polycyclic aromatic hydrocarbons
	Bacterial toxins
	Mycotoxins
	ll in the blanks. (Write your answer on the dots).
a)	The process of carcinogenesis requires often more than one mutation and is therefore
	considered a process.
b)	The process of carcinogenesis requires activation ofgenes and inactivation
	ofgenes.
c)	The three stages in the process of carcinogenesis are called,
	, and

9) Toxicity testing in vitro and in vivo

33) Match each description on the left with its corresponding term on the right. The terms may be used only once.

Description	Number of Term
A. Single dose test	•••••
B. 90 days test	•••••
C. 28 days test	
D. Carcinogenicity test	
E. Skin irritation test	

Term	
1. semi-chronic test	
2. chronic test	
3. acute test	
4. short term test	
5. specific test	

	hat is true about the ADI or TDI? (Indicate all that apply).
	The ADI is for non-genotoxic compounds, the TDI for genotoxic compounds.
Ц	The ADI is used for additives and therefore larger safety factors are used to derive it from the NOAEL.
П	The ADI may vary depending on the study from which the NOAEL is taken.
	The ADI and TDI are health based safety limits and independent from the experimental
	design of the animal study from which they are derived.
	The TDI for a compound is generally higher than its ADI.
35) W	hat is true about <i>in vitro</i> testing? (Indicate all that apply).
	<i>In vitro</i> test alternatives for all <i>in vivo</i> end parameters will be available in the near future.
	Present <i>in vitro</i> tests can predict the carcinogenic potential of a compound.
	The HGPRT test predicts genotoxicty for mammalian cells.
	The Mouse Lymphoma tk assay can predict both gene mutations as well as several chromosomal adverse effects.
	In vitro toxicity testing is most useful for genotoxicity and toxicokinetics.
36) W	hat are in vitro tests for detecting gene mutations? (Indicate all that apply).
	Mouse Lymphoma tk assay
	S9 incubations
	Micronucleus test
	SCE test
	HGPRT test

10) Toxicity testing: Alternatives

37) Indicate which 3 toxicity tests require the highest number of experimental animals. ☐ Acute oral toxicity tests. ☐ Two generation reproductive toxicity tests. ☐ Developmental toxicity tests. ☐ Further in vivo mutagenicity tests. ☐ Carcinogenicity tests.
 38) What is true about the 3Rs? (Indicate all that apply). ☐ The 3Rs indicate 3 orders of magnitude reduction in the number of experimental animals needed for safety testing. ☐ The 3Rs stand for Reduction Replacement and Refinement of animal testing. ☐ The 3Rs stand for Reach Regulated Replacement of animal testing. ☐ The 3Rs are relevant for all types of toxicity testing. ☐ The 3Rs are highly relevant for reproductive toxicity testing.
 39) What is true about REACH? (Indicate all that apply). ☐ Implementation of REACH will reduce the number of animal experiments because it includes alternative testing strategies. ☐ REACH is restricted to all industrial chemicals used in the European Union. ☐ REACH aims at evaluation of the risk of 30 000 chemicals within the next 11 years. ☐ REACH stands for Regulation, Elimination and Authorisation of Chemicals ☐ REACH was initialized because for many industrial chemicals toxicity data were not available.
40) What techniques are expected to contribute to development of alternatives for animal testing? (Indicate all that apply). ☐ Omics technologies ☐ Computational toxicology ☐ Quantitative structure activity relationship approaches ☐ In vitro tests ☐ Microdosing in humans

11) Toxicological risk assessment

 41) What are is true about environmental risk assessment? (Indicate all that apply). □ In the quotient method the Predicted estimated concentration (PEC) is compared to the Predicted no effect concentration (PNEC). □ The PNEC is the equivalent of the NOAEL in food safety assessment. □ The PNEC is the equivalent of the ADI in food safety assessment. □ The PEC is equivalent to the LOAEL in food safety assessment. □ The same uncertainty factors are used as in risk assessment of other chemicals.
42) What is true about human risk assessment? (Indicate all that apply). □ Well conducted epidemiological studies can provide convincing evidence for human risk.
☐ Ames tests provide insight in human cancer risks.
☐ Interspecies and intraspecies differences are not taken into account when calculating
cancer risks by linear extrapolation from animal data.
 □ For quantitative risk assessment the benchmark dose (BMD) approach provides an estimate that is less dependent on the experimental set-up than the NOAEL approach. □ Exposure assessment is often a key area of uncertainty in human risk assessment.
43) What is the best description for the benchmark dose? (Indicate the one best answer). O A dose that equals the NOAEL.
O The dose that results in a defined, for example 10%, response.
O The dose that defines the sensitivity of a part of the population.
O A dose that defines the margin of safety, taking the statistical uncertainty into account.
44) The role of safety factors is to take into account (Indicate all that apply). □differences in life style factors and genetic variation.
☐differences between species.
☐differences in methods for exposure assessment.
☐sub-optimal study designs.
☐differences in intake levels.

12) Forensic Toxicology

45) - 48) No examples available

13. Toxicology of the liver

 49) What are chemicals that cause liver toxicity? (Indicate the one best answer). O Dioxins, PCBs and furans. O Acetaminophen and bromobenzene. O Fatty acids and mycotoxins. O Alcohol and bile acids. 	
50) Which types of effect on the liver are chemically induced? (Indicate all that apply). ☐ steatosis ☐ glomerular injury ☐ emphysema ☐ lymphatic necrosis ☐ cirrhosis	
 51) What is true about toxic effects of chemicals on the liver? (Indicate all that apply). □ The toxic effect is often increased because activated macrophages excrete reactive oxygen species. □ Kupffer cells, the fixed macrophages in the liver are most sensitive to chemical compounds because they have the most active metabolism of xenobiotics. □ Most compounds that cause toxic effects on the liver interact with bile formation. □ Zone 3 hepatocytes are especially sensitive to chemicals that require bioactivation cytochromes P450. □ Porphyria results from chemicals that interfere with heme biosynthesis. 	by
 52) Indicate what is true about the mechanism of liver damage caused by aflatoxin. (Indicate all that apply). ☐ The ultimate toxic effect is liver necrosis. ☐ Aflatoxin requires bioactivation before it can exert its adverse effect on the liver. ☐ Mutation of the gene for the p53 tumor suppressor gene may play a role in the mechanism of toxic action. ☐ Mutation of the ras oncogene plays a role in the mechanism of toxic action. ☐ The ultimate toxic effect is mesothelioma. 	ite

14. Toxic responses of the kidney

 53) What is true about toxic effects of chemicals on the kidney? (Indicate all that apply). □ The kidney is extra susceptible to toxic injury because non- toxic concentrations in plasma may reach toxic concentrations in the kidney. □ The glomerulus is the part of the kidney most sensitive to toxic damage. □ Chemicals that require bioactivation are toxic to the kidney upon metabolism in the liver. □ Beta-lyase is an enzyme involved in bioactivation of several kidney toxins. □ The distal tubule is the most common site for renal injury by chemicals. 		
54) Give the right sequential order of the follodots).	owing steps. (Number the steps from 1 to 5 on the	
Transport to the kidney		
Conversion by glutathione S-transferases		
Conversion by beta-lyase		
Transport to the liver		
Conversion in the mercapturic acid pathway		
 55) What are the most important enzymes for bioactivation of halogenated hydrocarbons causing kidney toxicity? (Indicate the one best answer) O Cytochromes P450, dehalogenases, epoxide hydroxlases. O Beta-lyase, cytochrome P450s, glutathione S-transferases. O Mercapturic acid pathway enzymes. O The correct answer is not given. 		

56) Match each	description with it	s corresponding chemical.	The terms may be us	sea only once.

Description	Number
	of Term
A. Therapeutic agents for which use levels are	
limited by nephrotoxicity.	
B. Chemical that requires cytochrome P450	
bioactivation to become toxic.	
C. Chemical requiring beta-lyase activity to	
become nephrotoxic.	
D. Chemical causing nephrotoxicity produced by a	
fungus.	
E. Chemical that becomes nephrotoxic because it	
accumulates in the kidney.	

Term
1. chloroform
2. ochratoxin A
3. cadmium
4. halogenated hydrocarbon
5. aminoglycoside antibiotics

15. Toxic responses of the respiratory system

5/) What are important types of lung toxicity? (Indicate the one best answer).
O Cancer, mesothelioma, and chirrosis.
O Silicosis, inflammation, and hypersensitivity.
O Inflammation, methemoglobinemia, and asbestosis.
O Emphysema, fibrosis, and edema.
58) Fill in the blanks. (Write your answer on the dots).
a) The cells in the alveoli most sensitive to chemical damage are the
pneumocytes, and when damaged they can be replaced by pneumocytes.
b) The Clara cells in the lung are of importance for toxicity because they contain the
highest level of
c) A factor determining how deep gasses can penetrate into the lungs is their
d) A factor determining how deep particles can penetrate into the lungs is
59) Indicate which compounds may cause lung toxicity. (Indicate all that apply).
□ Asbestos
□ Dioxins
□ Radon
□ СО
☐ Mustard gas
60) Match each description with the name of the toxic effect described. The chemicals may be used only once.

Description of the toxic effect	Number of Term
A. Accumulation of macrophages.	
B. Accumulation of water.	
C. Accumulation of collagen.	
D. Accumulation of damage to alveolar walls.	
E. Accumulation of malignant tissue.	

Chemical
1. emphysema
2. oedema
3. mesothelioma
4. inflammation
5. fibrosis

16. Toxicology of heart and vascular system

61) Indicate what are the targets for direct effect ☐ Effects on neurotransmitters ☐ Effects on calcium channels ☐ Effects on Na/K pumps ☐ Effects on oxidative phosphorylation ☐ Effects on the electron transport system i		on. (Indicate all that apply).
62) Match each description with the name of the used only once.	toxic effect describe	ed. The chemicals may be
Description of the territor offers	N1	Chemical
Description of the toxic effect	Number of Term	1. inotropy
A. effects on contraction frequency of the heart		2. chronotropy
B. effects on heart rhythm	•••••	3. bathmotropy
C. effects on contraction intensity of the heart	•••••	4. dromotropy
D. effects on excitability of the heart E. effects on impulse conductivity of the heart		5. arrhytmia
63) Which are chemicals known for their heart to □ Digitalis glycosides □ Adriamycin □ Polycyclic hydrocarbons □ Polyunsaturated fatty acids □ Chlorinated dioxins	oxicity? (Indicate all	l that apply).
 64) Indicate what is true about cardiovascular to ☐ The mechanism by which aterosclerosis ☐ The somatic mutation theory predicts that tumor sites. ☐ In the response to injury theory endotheli ☐ Atherosclerotic plaque formation may restimulation. ☐ Vasoconstriction and vasodilatation are eatherosclerosis. 	develops is generally at atherosclerotic place ial cells develop into present an effect resu	y agreed upon. ques represent malignant o atherosclerotic plaques. ulting from immune

17. Toxic response of the Endocrine System

65) What is to	rue about endocrine disrr	uption? (Indicate all that apply).
-	ounds causing endocring cal compounds.	e disruption originate from a very narrow class of
□ Comp	ounds causing endocrine ounds causing endocrine	e disruption are present in our food and environment. e disruption are toxic to one of the hormone producing
□ Comp	ounds causing endocrine	e disruption can be a risk factor for cancer incidences. e disruption may cause developmental toxicity.
☐ Skin i☐ Increa☐ Increa☐ Impos	ashes. sed chances on liver can sed chances on breast ca	ancer.
67) Give the dots).	right sequential order of	the following steps. (Number the steps from 1 to 5 on the
Exposure to a Activation of	opment. gene expression. n endocrine disruptor. cell proliferation. the estrogen receptor.	

68) Match each description on the left with its corresponding term on the right. The terms may

Description	Number of Term
A. Synthetic estrogen.	
B. Mycoestrogen.	
C. Metabolite with estrogen activity.	
D. Phytoestrogen.	
E. Industrial chemical with estrogen activity.	

be used only once.

Term
1. zearalenone
2. genistein
3. hydroxy-PCB
4. diethylstilbestrol (DES)
5. bisphenol A

18. Toxic responses of the nervous system

69) Inc	licate what is true about neurotoxicity. (Indicate all that apply).
	Neurons are especially sensitive towards the consequences of CO or cyanide poisoning.
	For neurotoxicity chronic effects are of larger concern than acute effects.
	Methylmercury causes neurotoxicity and thereby loss of coordination (ataxia).
	Neuronopathy may cause a stocking and glove like distribution of effects.
	Neuronopathy of dopaminergic neurons may cause Parkinson like effects.
70) Fil	l in the blanks. (Write your answer on the dots).
a)	Minamata disease is caused by the chemical compound
b)	A stocking-and-glove like distribution of neurotoxic effect can be due to a type of neurotoxicity that is also called
c)	Neurotoxicity caused by effects of chemicals on the myelin layer produced by the myelinating cells is called
d)	Neurotoxicity caused by an adverse effect directly on the central cell body of the
	neuron is also called
71) Wi	hat are compounds causing neurotransmission associated toxicity? (Indicate the one best r).
	Methyl mercury, cocaine, and botulinum toxin.
	Saxitoxin, sarin, and curare.
	Cetrodotoxin, TOCP (triortho cresyl phosphate), and CS ₂ (carbon disulfide).
0 (Organophosphorous esters, gamma-diketones, and lead (Pb).
72) Inc	licate which effects represent neurotransmission toxicity. (Indicate all that apply).
	Effects on neurotransmitter biosynthesis
	Effects on neurotransmitter release
	Effects on the post synaptic receptor
	Effects on acetylcholine esterase
	Effects on sodium (Na ⁺) channels

19. Toxic responses of the skin

 73) What are characteristic toxic effects of chemicals on the skin? (Indicate the one best answer). O Contact dermatitis, skin necrosis, skin colourisation. O Atopic contact dermatitis, urticaria, phototoxicity. O Acne, steatosis, skin cancer. O Hydratation, oedema, melanoma.
74) What is true about toxic effects of chemicals on the skin? (Indicate all that apply). ☐ The skin is highly sensitive because it has a large surface where exposure can occur. ☐ The skin is highly sensitive because it is easily penetrated by water soluble compounds. ☐ The skin is especially sensitive to corrosive agents. ☐ UV light can play a role in the skin toxicity of chemical compounds. ☐ Toxic effects on the skin may occur due to systemic exposure.
 75) Fill in the blanks (Write your answer on the dots). a. The two types of contact dermatitis that can be caused by chemical compounds are called
76) Which compounds are known for their skin toxicity? (Indicate all that apply). TCDD Sarin Arsenic Methylmercury PAHs

20. Developmental toxicology

77) What is true about developmental toxicology? (Inc. ☐ Mutation can be a mechanism underlying developmental developmental toxicity of a chemical is usually dose and lethalithy at high dose. ☐ The majority of the birth defects are caused by or maternal metabolic imbalances. ☐ Developmental toxicity can result from effects 78) Match each description with its corresponding chemical metabolic imbalances.	lopmental to underlying of y reflected by exposure to on the place	xicity. developmental toxicity. y growth retardation at low radiation, drugs, chemicals nta only.
	T	Term
Description	Number	1. cylcophosphamide
A. Teratogenic chemotherapeutic agent that causes	of Term	2. thalidomide
DNA crosslinks.	•••••	3. cadmium
B. Vitamin A analogue with teratogenic potential.		4. isotretinoin
C. Teratogenic because of placental toxicity.		5. DES (diethylstilbestrol)
D. Chemical that introduced the concept of		
developmental toxicity in the field of safety testing.		
E. Teratogenic chemical causing vaginal cancer in		
female offspring and also effects in male second		
generation.		
79) Indicate which principles are part of Wilson's gene that apply). ☐ Susceptibility toward teratogenic agents depend ☐ Susceptibility varies with the developmental sta ☐ There is no threshold and no NOAEL for terato ☐ With increasing concentration of the teratogen of retardation to malformations to death. ☐ There is homology in development and thus in order.	ls on the gendage at time of genic effects observed effe	otype of the conceptus. Exposure ects change from growth
80) What is the most important principle underlying the toxicity of chemical compounds for men by doing animanswer) O Susceptibility varies only marginally with the spe	nal experime	nts? (Indicate the one best
O There is homology in development for different n		
O Dose response curves show the same characteristic		

O Mechanisms of teratogenicity are similar in different mammalian species.